Exact Bounds on the Order of the Maximum Clique of a Graph

نویسنده

  • Marco Budinich
چکیده

The paper reviews some of the existing exact bounds to the maximum clique of a graph and successively presents a new upper and a new lower bound. The new upper bound is !6 n − rank 1 A=2, where 1 A is the adjacency matrix of the complementary graph, and derives from a formulation of the maximum clique problem in complex space. The new lower bound is !¿ 1=(1− gj∗( ∗)) (see text for details) and improves strictly the present best lower bound published by Wilf (J. Combin. Theory Ser. B 40 (1986) 113). Throughout the paper an eye is kept on the computational complexity of actually calculating the bounds. At the end, the various bounds are compared on 700 random graphs. ? 2002 Elsevier Science B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower bounds on the signed (total) $k$-domination number

Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...

متن کامل

Computing Multiplicative Zagreb Indices with Respect to Chromatic and Clique Numbers

The chromatic number of a graph G, denoted by χ(G), is the minimum number of colors such that G can be colored with these colors in such a way that no two adjacent vertices have the same color. A clique in a graph is a set of mutually adjacent vertices. The maximum size of a clique in a graph G is called the clique number of G. The Turán graph Tn(k) is a complete k-partite graph whose partition...

متن کامل

On ‎c‎omputing the general Narumi-Katayama index of some ‎graphs

‎The Narumi-Katayama index was the first topological index defined‎ ‎by the product of some graph theoretical quantities‎. ‎Let $G$ be a ‎simple graph with vertex set $V = {v_1,ldots‎, ‎v_n }$ and $d(v)$ be‎ ‎the degree of vertex $v$ in the graph $G$‎. ‎The Narumi-Katayama ‎index is defined as $NK(G) = prod_{vin V}d(v)$‎. ‎In this paper,‎ ‎the Narumi-Katayama index is generalized using a $n$-ve...

متن کامل

SOME GRAPH PARAMETERS ON THE COMPOSITE ORDER CAYLEY GRAPH

In this paper, the composite order Cayley graph Cay(G, S) is introduced, where G is a group and S is the set of all composite order elements of G. Some graph parameters such as diameter, girth, clique number, independence number, vertex chromatic number and domination number are calculated for the composite order Cayley graph of some certain groups. Moreover, the planarity of composite order Ca...

متن کامل

Some Graph Polynomials of the Power Graph and its Supergraphs

‎In this paper‎, ‎exact formulas for the dependence‎, ‎independence‎, ‎vertex cover and clique polynomials of the power graph and its‎ ‎supergraphs for certain finite groups are presented‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 127  شماره 

صفحات  -

تاریخ انتشار 2003